@adbiogas #UKADBiogas

HOW PRE-TREATMENT REDUCES CONTAMINATION AND AIDS DIGESTION

LUIS VERGARA **TECHNICAL DIRECTOR ULTRAWAVES REACTORS**

Annual Expo & Conference

DAY TWO. 4TH JULY 12.00 - 13.00

How pre-treatment reduces contamination and aids digestion

4th July 2013, Purple Seminar Theatre

ULTRASONIC DISINTEGRATION OF THE BIOMASS TO BOOST ANAEROBIC DIGESTION EFFICIENCY

INDEX

- 1. Ultrasound engineering
- 2. Anaerobic digestion application
- 3. References

1. ULTRASOUND ENGINEERING

What is ultrasound?

- A wave is a disturbance travelling through a medium
- Sound is a wave where excited magnitude is pressure
- Ultrasound (US) is a sound wave where the frequency is beyond 20 kHz
- With adequate frequencies and intensities strong ultrasonic cavitation is produced

1. ULTRASOUND ENGINEERING

Ultrasonic cavitation

- Forceful implosion takes place and high energy is delivered
- Despite the extreme conditions inside the bubbles the US reactor works under normal T & P

<mark>&</mark> 3-4 JU

GAS BIRMINGHAM NEC

1. ULTRASOUND ENGINEERING

Effect on the biomass

1. ULTRASOUND ENGINEERING

The ultrasonic reactor

- 5 oscillators (1 kW each)
- Reactor volume 30 l
- Frequency 20 kHz & intensity 25 to 50 W/cm²
- Sonication dose 1 to 9 kWh/m³
- Sizes 1.5 x 1.1 x 0.35 m
- Scalable to all ADF sizes by multiple reactors configuration
 UKAD& 3-4 JULY 2013 BIOGAS BIRMINGHAM NEC

1. ULTRASOUND ENGINEERING

Transferring energy to the sludge

New sonotrode

2. ANAEROBIC DIGESTION APPLICATION

Process

IKAD& 3-4 JULY 20 IOGAS birmingham N

- Biomass to be treated is between 30 and 50% of the wet flow
- US dose ≈ 4 kWh/m³ to reach aggregates breakdown
- Readily biodegradable materials and enzymes are released
- Hydrolysis step is highly intensified
- The organic fraction is further degraded

2. ANAEROBIC DIGESTION APPLICATION

An example of common sizing

- Wet solids: 25 30 ton WS/d
- Dry solids content ≈ 20%
- Dry solids: 5 6 ton DS/d
- Dry solids (per year): 1,825 2,190 ton DS/y
- Plant capacity: 500 kW_{el}

It is only necessary a 5 kW US unit for each 500 kW_{el} of plant size...!!!

2. ANAEROBIC DIGESTION APPLICATION

Typical results obtained

- Increase in Volatile Solids degradation: 10 20%
- Increase in biogas production: 10 20% ⁽¹⁾
- Increase in methane content: 1 2%
- Decrease in viscosity: 15 25%

& 3-4 JULY 2

• Substrate saving: 10 - 20% ⁽²⁾ (1 or 2 is reached)

A 500 kW_{el} plant is optimised up to reach an extra of 50 - 100 kW_{el} with only 5 kW of US meaning a big net power production...!!!

2. ANAEROBIC DIGESTION APPLICATION Tools: samples sonication & BMP tests

2. ANAEROBIC DIGESTION APPLICATION

Installation in ADFs

AD& 3-4 JULY GAS birminghai

- Place to install the ultrasonic reactor depends on several factors
- Some factors are DS %, viscosity, biomass structure and type of AD process

3. REFERENCES

Bordesholmerland FBP

3. REFERENCES

Bordesholmerland FBP

Initial conditions

- 2 parallel lines (2 x 537 kW_{el}) to produce 2 x 6,150 m³/d biogas
 @ 50% in methane content
- 2 main & 2 post digesters with 2 storage tanks (2,500 m³ each)
- 2 x 25 ton maize/d fed to be digested within 90 d HRT

<u>Goal</u>

Reduce amount of substrate

8 3-4 JULY 2

3. REFERENCES

Bordesholmerland FBP

US installation

<mark>&</mark> | 3-4 JU

GAS BIRMINGHAM NEC

Sonication of 36 m³/d @ 3.3 kWh/m³ in line 2

3. REFERENCES

Bordesholmerland FBP

Results

- 4 ton/d less substrate (-17%)
- 2 % increase in methane content
- Decrease in viscosity

3. REFERENCES

Mariks FWBP

3. REFERENCES

Mariks FWBP

Initial conditions

KAD& 3-4 JULY **2**

S BIRMINGHAN

- 2 main & 1 post digester (1,800 m³ each) and 1 storage tank (5,000 m³)
- 700 kW_{el} power production & methane content ca. 58%
- 73 ton/d fed to be digested within 40 d HRT

<u>Goal</u>

Increase biogas production

3. REFERENCES

Mariks FWBP

US installation

• Sonication of 34 m³/d @ 3.5 kWh/m³ from post to main digester

3. REFERENCES

Mariks FWBP

3-4 JULY **20**

BIOGAS BIRMINGHAM NEC

Results

 kW_{el} power increased in 13% and volatile solids concentration in post digester decreased by 8%

3. REFERENCES

Bamberg WwTW

3. REFERENCES

Bamberg WwTW

Initial conditions

KAD& 3-4 JULY 20 IOGAS BIRMINGHAM I

- 220,000 PE capacity by design was overloaded up to reach a treatment of 330,000 PE
- 150 m³/d of primary sludge and 250 m³/d of TWAS
- 35% average in VS degradation @ HRT of 18 d

<u>Goal</u>

Achieve a minimum of 45% in VS degradation

3. REFERENCES

Bamberg WwTW

US installation

Sonication of 60 m³/d of the TWAS @ 4 kWh/m³

3. REFERENCES

Bamberg WwTW

3. REFERENCES

Bamberg WwTW

Results

- VS degradation increased from 34 to 50% (average)
- Reduction of the VS in the digested sludge from 60 to 54%
- Significantly increase in biogas production (+ 30% average)
- A new anaerobic digester construction was avoided what meant a saving of 1.5 million €

Thank you

Luis Vergara Technical Director Iuis@ultrawaves.co.uk

