SONICATED SLUDGE AS CARBON SOURCE FOR DENITRIFICATION

CASE STUDY OF FIRST AUSTRALIAN APPLICATION

AWA Ozwater'15 Conference, Adelaide, 12-14 May 2015

Unitywater

Acknowledgements

- Pedro Rojas Unitywater Process Engineer (at time of study)
- Shaun Reynolds Unitywater Operator-in-Charge Maroochydore STP
- Rod Wellings Royce Water Technologies
- Dr Klaus Nickel Ultrawaves & Technical University Hamburg-Harburg
- Luisa Magalhaes Unitywater Grants and Innovation Specialist

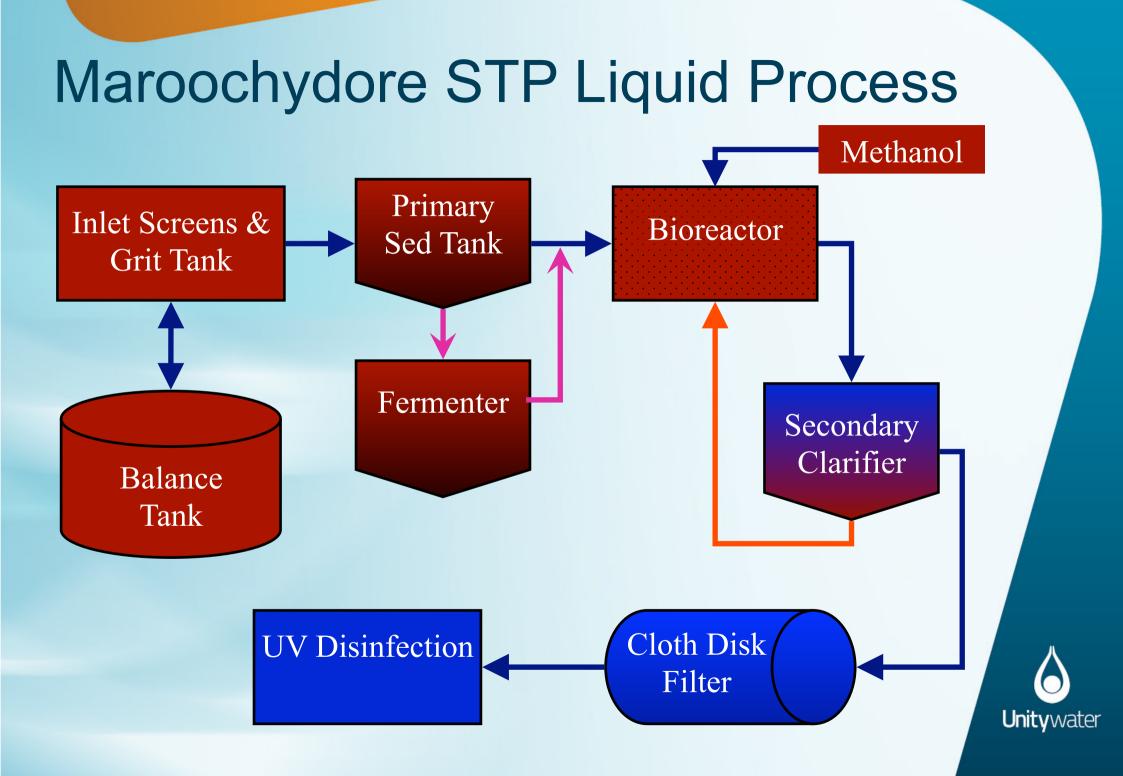

Introduction

- Cost effective N removal & energy neutrality
- Maroochydore STP & trial method
- Ultrasonic WAS lysis
- Results:
 - Nitrogen removal performance
 - Decreased sludge production
 - Economic evaluation
- Conclusion

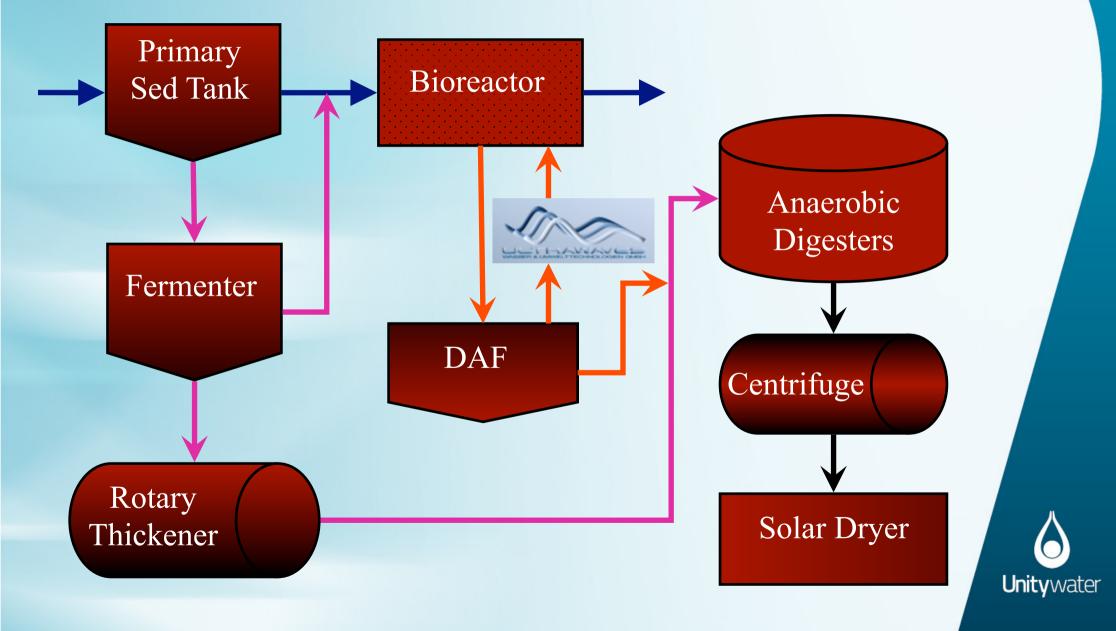
Our service area

Water and sewerage services. Population of 700,000 people. Geographical area, of 5,223km² north of Brisbane. From Noosa and Cooroy to Woodford, Bribie Island, Redcliffe and Brendale. STPs effluent release to coastal receiving waters.

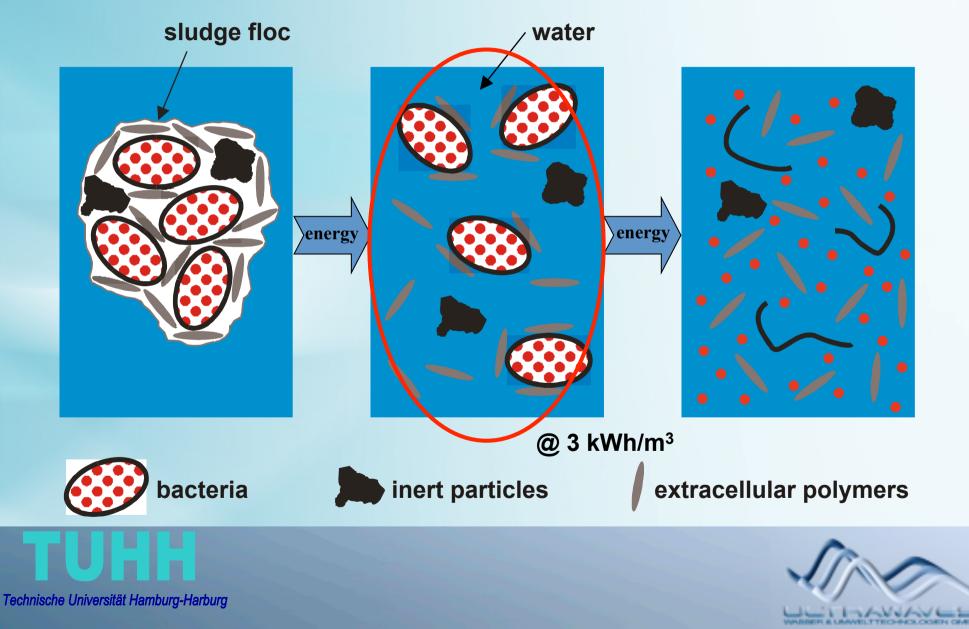
The Need for Nitrogen Removal



- Maroochydore STP discharges into estuary
- N-limited environment
- Licence effluent total N < 3 mg/L</p>
- Conventional nitrificationdenitrification process
- Aeration → energy cost
- COD → methanol cost
- 15 day sludge age
- But compromised ability to generate biogas



Maroochydore STR



Maroochydore STP Solids Process

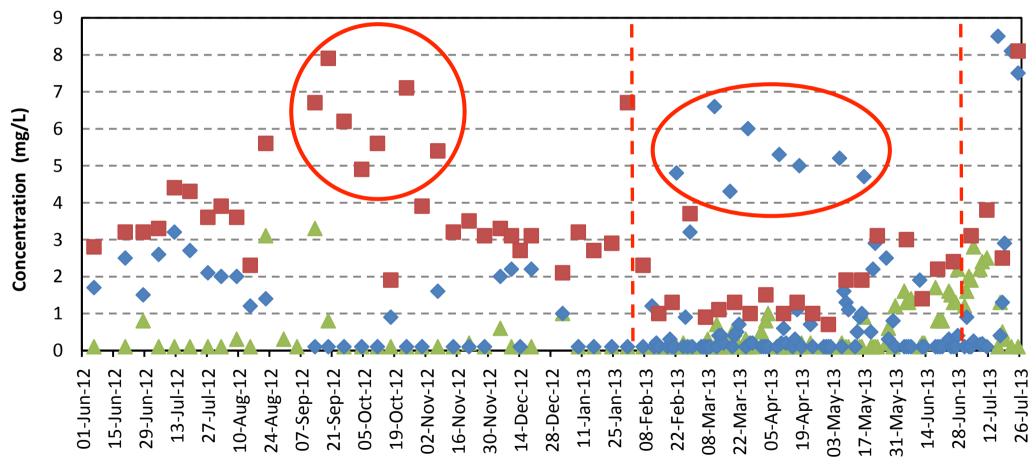
Ultrasonic Activated Sludge Lysis

Ultrawaves Trial - one 5 kW unit

Carbon → enhanced denitrification; no methanol
 Sonicated WAS = 25 m³/d x 38 kg TSS/m³

Ultrasonic Lysis Observations

- Soluble COD = 5 kg/d; Total COD = 850 kg/d
- Heterotrophic plate counts using two media:
- Yeast: Before 12x10⁶ cfu/mL; After 46x10⁶ cfu/mL
- R2A: Before 15x10⁶ cfu/mL; After 29x10⁶ cfu/mL
- Sonotrode erosion (after 15 months) → maintenance



Results: Nitrogen Removal

🔺 NH3-N 🔹 NOx-N 📕 Total N

- Trial 50%-ile effluent total N = 1.7 mg/L
- Trial was nitrate-limited

Results: Nitrogen Removal Capacity

Nitrogen Removal Indicators	kg COD/d	kg N/d	NO ₃ -N mg/L		
Effluent with no methanol and no Ultrawaves	-	57 kg/d	3.0 – 8.5 mg/L		
De-aeration zone on-line nitrate analyser	-	86 kg/d	5 – 10 mg/ L		
Methanol use before Ultrawaves trial	304 kg/d	101 kg/d	8.8 mg/L		
COD of sonicated WAS (but not 100% biodegradable)	850 kg/d	99 kg/d (max)	8.6 mg/L (max)		
 N removal capacity at least 57 kg/d; up to 90 kg/d Unitywater 					

Results: Sludge Production

Sludge Production Indicators	Baseline	Trial	Difference (%)
Mass balance VS destruction	935 kgVS/d	1075 kgVS/d	15%
Observed yield before digesters	0.47 kgVS/ kgCOD	0.45 kgVS/ kgCOD	4%
Observed yield after digesters	0.41 kgVS/ kgCOD	0.37 kgVS/ kgCOD	10%
Specific sludge prod ⁿ (relative to EP)	51 gTS/EP/d	48 gTS/EP/d	6%

Unitywater

• 4% COD \rightarrow CO₂ and 6% COD \rightarrow Biogas (incl. CH₄)

Results: Ultrawaves Costs

Cost Component	Unit Cost	Annual Cost	NPV	
CAPEX - Ultrawaves units	\$176,000 / unit	4 units in 2015 +1 unit in 2021	-\$805,312	
OPEX - power	120 kWh/d/unit x \$0.12/kWh	\$5,256/yr/unit	-\$223 <i>,</i> 689	
OPEX - sonotrode replacement	\$2,250 x 5/unit	\$11,250/unit every 18 mth	-\$392 <i>,</i> 845	
OPEX – booster shaft replacement	\$1,740 x 5/unit	\$8,700/unit every 3 yr	-\$187,300	
 Ultrawaves CAPEX + OPEX NPV = -\$1,609,147 Unitywat 				

Results: Economic Evaluation

- Annual OPEX savings:
- Methanol = 995 L/d x 0.77 kg/L x \$640/T = +\$178,973/ yr (increasing with EP growth)
- Biosolids = 90 kgVS/d x 4 units x 45%TS x \$60/T = + \$17,520/yr (increasing with EP growth)
- Total OPEX savings NPV = +\$2,128,017
- Ultrawaves CAPEX + OPEX NPV = -\$1,609,147
- Net Present Value = +\$518,870
- Installation (excluded above) needs to be <\$500,000</p>
- Conservative assumptions used, and more positive NPV with sensitivity analysis

Discussion

- So what do the results mean for cost effective N removal & energy neutrality
- Anaerobic reactor → Anammox → Mg/Lime P recovery are we ready?
- What about sunk capital of existing assets?
- Install primary sed tank upstream of existing bioreactors; increase capacity of existing bioreactors
- Install sonication using WAS as carbon source
- Anaerobic digesters VS destruction and biogas yield
- If primary sed tanks existing and improved N removal required, then sonication of WAS is an option

Conclusion

- First successful full-scale application in Australia of WAS sonication for enhanced denitrification
- Complete nitrate removal was achieved during the trial and N removal capacity was at least 57 kg/d
- Sludge production was decreased by 100 kg/d
- Economic evaluation showed that the OPEX savings, especially for methanol, resulted in a positive NPV
- WAS sonication technology opens options to:
 - Increase bioreactor capacity with primary sed tank
 - Achieve N removal in COD-limited bioreactors
 - Decrease sludge production and increase biogas

Thank you

Questions ?

